Supplementary Material

(1) Proof of Claim 1 in Lemma 2 (EDA):
Define J(B*, %, UY) as the joint objective function at iteration t. When fix @¢, there is
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Note that with fixed @f, the model form a ¢,-norm based least square problem with respect to B,
which is always monotonically non-increasing. So, the inequality (3.1) holds.
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According to Lemma 1, we know that
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Therefore, combine (3.2) with (3.3), we can obtain that

J(ﬁt, Ot, Ut) > J(ﬁt+1, @t,UH'l) (34)

Then, Claim 1 is proven.
Note that U? is completely determined when fix Bt according to (15), thus Ut*? is also determined
when Bt*1 is fixed.

(2) Proof of Claim 2 in Lemma 2 (EDA):
When fix Bt*1, U*? is also fixed, and the objective function is convex with respect to ©. As can be
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seen from (18), the update rule of ® can be obtained by setting e = 0, then there is
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Therefore, from (3.5) the update rule of © is obtained as
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Additionally, since the second order derivative of the objective function with respectto @ is
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From (3.7), we know that the objective function is convex with respect to @, so the update rule (3.6)
can minimize the objective function, there is
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Then, Claim 2 is proven.

(3) Proof of Claim 3 in Lemma 2 (MVEDA):
The proof of Claim 3 is similar with the proof of Claim 1, which is shown as follows.
Define J(BL, 0%, at, UL) as the joint objective function at iteration t. When fix @5, «f, there is
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Note that with fixed %, «f, the model form a ¢,-norm based least square problem with respect to B,
which is always monotonically non-increasing. So, the inequality (4.1) holds.
According to (3), we know that XV_ilIBylla1 = Xy—1 Ti=i||Biyll, . then the summation
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According to Lemma 1, we know that
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Therefore, combine (4.2) with (4.3), we can obtain that
J (B, 0%, b, UY) = J(BL, O, af, UH) (4.4)

Then, Claim 3 is proven.
Note that U% is completely determined when fix B¢ according to (15), thus UZ*! is also determined



when B&+1 s fixed.

(4) Proof of Claim 4 in Lemma 2 (MVEDA):
The proof of Claim 4 is similar with the proof of Claim 2.
When fix B5+1, UL is also fixed, and the objective function is convex with respectto @,. As can be
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seen from (29), the update rule of @, can be obtained by setting
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Therefore, from (3.5) the update rule of @, is obtained as
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Additionally, since the second order derivative of the objective function with respectto @, is
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From (4.7), we know that the objective function is convex with respect to @, so the update rule (4.6)
can minimize the objective function, there is
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Then, Claim 4 is proven.

(5) Proof of Claim 5 in Lemma 3 (MVEDA).
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As can be seen from (31), the update rule of «,, is obtained by setting
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Therefore, we know that the objective function is convex with respect to «,,, there is
JBF 05 af, UFHY) = J(B5H, 51, o, Ut (4.10)
Then, Claim 5 is proven.



